Music as a window to the creating brain
Fredrik Ullén, Dept of Neuroscience, Karolinska Institutet
East-West Connections, Singapore, 2016

Why we study the neuroscience of music and other art forms
- Intrinsically interesting – neuroaesthetics
- Interventions
- Model behaviors for cognition in general
 - Sensory discrimination
 - Motor performance and coordination
 - Emotion
 - Social cognition
 - Executive control
 - Skill learning and expertise
 - Creativity
 - etc

Why we study the neuroscience of music and other art forms
- Intrinsically interesting – neuroaesthetics
- Interventions
- Model behaviors for cognition in general
 - Sensory discrimination
 - Motor performance and coordination
 - Emotion
 - Social cognition
 - Executive control
 - Skill learning and expertise
 - Creativity
 - etc

Music training and the brain

Training and expert performance

Gray matter in musicians

Krampe and Ericsson (1996), J Exp Psychol: General
Geer and Schlaug (2003), J Neuronic
Specific gray matter effects of different musical training

"Omega Sign" (OS) in precentral gyrus

OS-1 or OS-2

OS-2

Bangert and Schlaug (2006), Eur J Neurosci

Musical training and gray matter – longitudinal data

Hyde et al (2009), J Neurosci

Regional gray matter structure and performance

![Graph showing gray matter volumes and performance](image)

Schneider et al (2002), Nat Neurosci

White matter in musicians

![Graph showing internal capsule](image)

Bangsbo et al (2005), Nat Neurosci

White matter in musicians

More well-organized corpus callosum in early trained musicians

Steele et al (2013), J Neurosci

Musical training and white matter – longitudinal data

Hyde et al (2009), J Neurosci
Summary

- Musical training is correlated with brain anatomy
 - Gray matter (regional volume, cortical thickness)
 - White matter (organization, connectivity)
- Neuroanatomical effects are specific to type of musical training
 - Expertise-related
- Longitudinal data show differences developing over time in trainers versus non-trainers

Training effects - the problem of causality

The problem of causality 1

- Cross-sectional data
- Many causal scenarios are possible

The problem of causality 2

- Observational longitudinal studies

The problem of causality 3

- Randomized longitudinal studies
- Ideal in principle
- Practically difficult/impossible in expertise studies
 - Months/years of dedicated practice

Case in point: music training and "musical ear"

- "Musical ear" = musical auditory discrimination
- Ability to discriminate rhythms, melodies, pitches etc
- Positively related to musical training
- Musicians outperform non-musicians
- Commonly assessed in entrance exams to music colleges
Humans making music

Web-based data collection (finished Feb 2013)
- Responses from > 10,500 twin individuals
- Music training
- Musical childhood environment
- Musical auditory discrimination
- General IQ, reaction time
- Creative achievement (7 domains)
- General personality (Big Five), schizotypy
- Intrinsic and extrinsic motivation (GSM)
- Occupational preferences
- Proneness for flow experiences
- General psychological and somatic health
- Emotional processing (alexithymia)

What drives the association between training and musical ear?

- Participants
 - 1211 monozygotic ("identical") pairs (MZ)
 - 1358 dizygotic pairs (DZ)
 - 5401 single twin individuals
- Measures
 - Total hours of musical practice
 - Swedish Music Discrimination Test (SMDT)
 - Melodies
 - Rhythms
 - Pitches

Musical training and music discrimination

<table>
<thead>
<tr>
<th>Training</th>
<th>Melody</th>
<th>Rhythm</th>
<th>Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>.32</td>
<td>.34</td>
<td>.34</td>
<td></td>
</tr>
<tr>
<td>Melody</td>
<td>.39</td>
<td>.39</td>
<td></td>
</tr>
<tr>
<td>Rhythm</td>
<td>.39</td>
<td>.39</td>
<td></td>
</tr>
</tbody>
</table>

5-12% of variance in ability explained by training — other things matter!

Twin modelling

- Classical twin design
 - Compare MZ and DZ twins
- Partition phenotypic variance and covariance into:
 - A: Additive genetic effects
 - C: Shared environment
 - E: Non-shared environment

Genetic factors influence training and musical abilities

<table>
<thead>
<tr>
<th>Training</th>
<th>Melody</th>
<th>Rhythm</th>
<th>Pitch</th>
<th>Heritability</th>
</tr>
</thead>
<tbody>
<tr>
<td>.32</td>
<td>.32</td>
<td>.34</td>
<td>.57</td>
<td></td>
</tr>
<tr>
<td>Melody</td>
<td>.39</td>
<td>.39</td>
<td>.58</td>
<td></td>
</tr>
<tr>
<td>Rhythm</td>
<td>.31</td>
<td>.50</td>
<td>.57</td>
<td></td>
</tr>
</tbody>
</table>

Musical training and music discrimination ability

No significant within-pair relations for any of the music discrimination scales (r values .00 -.08)
What drives the association between training and musical ear?

Deliberate practice only explains a moderate proportion of variance in expert performance.

Practice and expert performance - metaanalyses

- Deliberate practice only explains a moderate proportion of variance in expert performance.

Multifactorial Gene-environment Interaction Model (MGIM) of expertise

- Abilities (General Q) and narrow abilities
- Personality (Conscientiousness, Openness, Agreeableness, Neuroticism)
- Interests
- Motivation
- Physical properties (Muscle strength, Height, Size of body and extremities)
- Deliberate practice

Genes \rightarrow Environment

G-E covariance

Ullén, Hambrick, and Mosing (2016), Psychol Bull
Multifactorial Gene-environment Interaction Model (MGIM) of expertise

Genetic influences on musical discrimination *increase* with training

How can we get at causal effects of long-term training in expertise?

Monozygotic twins – intrapair difference model

Humans making music

Monozygotic twins discordant for piano practice

- 10 pairs with > 1300 h intrapair difference in piano practice (recruited from all over Sweden)
- “playing twin”: still active
- “non-playing twin”: no practice in adulthood
- all right-handed
Experiments

- Interviews
- Working memory tests
- Finger force control tests
- MR scanning
 - Brain anatomy (structural MRI)
 - Gray matter, diffusion MRI
 - Functional MRI
 - Sequence production, perception, improvisation

Why did the twins differ in musical engagement?

Psychological questionnaire data

- Personality
 - Playing twin higher in Openness
- Enjoying music
 - Playing twin more frequent psychological flow experiences during musical activities

Why did the twins differ in musical engagement? - Interviews

- Semi-structured interviews with five main themes
 - Own thoughts about why they became discordant
 - Childhood differences in "musical environment"
 - Music listening, music teachers, music interest of peers, parental engagement, public performing
 - Strong memories of music
 - Significance of music in your life
 - Interest and skills in language

Why did the twins differ in musical engagement? - Interviews

- Playing twin
 - More elaborate answers about meaning of music in life, emphasizing importance for personal identity
- No systematic within-pair differences in self-reported
 - Interests of peers, parental support, music teacher, ensemble playing, public performances, interest and aptitude for languages

Why did the twins differ in musical engagement? - Interviews

- Reported possible reasons for discordance idiosyncratic and unique for each pair, e.g.:
 - Different access to the piano
 - Different feelings about music genre played at home
 - Different needs for creative hobbies
 - Different feelings about the music teacher
 - Different attitudes to music as an expression of faith
 - Music-playing parent role model for one but not other twin
 - Etc
- When controlling for genes and shared environment, remaining influences are "unsystematic" in nature

Summary

- Discordant monozygotic twins provide a unique opportunity to study "pure training effects" (i.e. independent of genetic factors and common environment)
- Trained twin
 - Larger regional gray matter volume of left temporo-parietal junction
 - Higher fractional anisotropy in left pyramidal tract of playing twin
 - Higher working memory capacity for musical materials
Music as a window to the creating brain

Improvisation as a model for creative performance
- Ecologically valid
- Possible to study with brain imaging (simplified!)

What is the role of the DLPFC for improvisation?
- Dorsolateral prefrontal cortex (DLPFC)
 - Attention, working memory, selection

The DLPFC is activated when classical pianists improvise
- Improvisation (ornaments) versus from memory
 (Bengtsson et al., 2007; J Cogn Neurosci)
- Improvisation versus playing from score
 (de Manzano et al., 2012; NeuroImage)

The DLPFC is deactivated during jazz improvisation in jazz pianists
- Limb and Braun (2008), PLoS One
- Pinho et al. (2014), J Neurosci

Improvisation training and the brain
- Is specific jazz expertise one factor behind these findings?
 Does training improvisation have specific effects over and above classical piano training?
- 39 pianists (varied jazz/classical background)
- Brain activity during brief improvisations
- Associations with improvisation training (controlling for classical training)
Improvisation training negatively correlated with DLPFC activity during improvisation

Summary
- The involvement of the DLPFC in improvisation is lower for experienced improvisers
- Characteristics of the task also matter! (Pinho et al, 2015, Cereb Cortex)
 - Improvise in a given mood – low DLPFC
 - Improvise using a given pitch set – high DLPFC

Summary
- The involvement of the DLPFC in improvisation is lower for experienced improvisers
- Characteristics of the task also matter! (Pinho et al, 2015, Cereb Cortex)
 - Improvise in a given mood – low DLPFC
 - Improvise using a given pitch set – high DLPFC
- Different strategies for “creative thinking”?
 - Low top-down control – high level of task-specific expertise, allow spontaneous free association
 - High top-down control – lower level of task-specific expertise, free association not useful

General summary
- Artistic behaviors and professional artists are unique models for higher human cognition
- Music and expertise
 - Expertise is multifactorial and depends on gene-environment interactions
 - Twins are useful for studies of causal effects of long-term training
- Music and creativity
 - Improvisation as a model for creative cognition
 - Prefrontal involvement in creative thinking depends on training and task characteristics

Coworkers & collaborations
- Post-docs and alumni
 - Miriam Mosing, Karin Verweij, Orjan de Manzano
 - Helene Eriksson, László Harmat, Anders af Wåhlberg
- PhD students
 - Ana Luísa Pinho, Diana Müßgens, Lars Forsberg
- IT, administration
 - Pelle Karlsson, Louise von Essen
- Collaborations
 - Nancy Pedersen, Töres Theorell (KI), Guy Madison (Umeå University)
 - Zach Hambrick (Michigan State Univ), Mihály Csikszentmihályi (Claremont Grad Univ), Mark Hallett (NIH), Miguel Castelo-Branco (University of Coimbra)

Funding
- Bank of Sweden Tercentenary Fund
- Sven and Dagmar Salén Foundation
- Swedish Brain Foundation
- Kjell and Märtå Beijer Foundation
- Swedish Scientific Council